
GPGPU Acceleration of Memworld, a
Raycasting Engine for Direct-Memory

Representation of 3D Spaces
sddec22-18

Client: Dr. Wymore
Adviser: Dr. Wymore

William Blanchard, Mason DeClercq, Jay Edwards,
Cristofer Medina Lopez, Dalton Rederick, Collin Reeves

sddec22-18@iastate.edu
https://sddec22-18.sd.ece.iastate.edu

Memworld Implementation:
- World Chunks, Moving Objects, and Input Handling

OpenCL Implementation:
- Setup, Main Loop and Teardown
- Adding Objects into World

Renderer Implementation:
- Object Rotation, lighting, and pixel density

Physics Implementation:
- Bounding Box based Collision
- Voxel Based Collision
- Moving Platforms

World Implementation:
- Four Worlds and Hub for 3-D Platformer
- Voxel Dimensions: 512 x 512 x 512
- Collectables and Power-ups
- Designed to Highlight Features of Engine

UI Implementation:
- Display FPS and Collectables count
- 8 x 8 Bitmaps

File Importer Implementation:
- Import Objects using .vox files

Limitations:
- 64 objects, 512 x 512 x 512 voxels, world of 1024 x

1024 x 1024 voxels

Problem
- Dr. Wymore created a rendering

engine called “Memworld”
- Memworld is a voxel engine (3D

pixels/cubes)
- Used CPU for calculations
- Slow and “Blocky”

Solution
- GPGPU Parallelization

- General Purpose Computing
Graphical Processing Units

- Include features by his request or to
our interest

- Create a simple game to show off
improvements and features

Unit and Integration Testing:
- File Importing
- OpenCL
- Physics
- Memworld

Verified with acceptance testing that all criteria for
project was met (frame rate, world size, voxel density)

Users
- Game Developers

Use cases
- Render and object/world
- Physics simulation on

voxels
- Create a visual

representation of current
memory storage

Design Approach
Memworld - Main loop, world initialization, shader initialization
File Importer - Called by Memworld to initialize worlds. Imports
MagicaVoxel files
OpenCL - Called in main loop, does computation on GPU for displaying
the world
Physics - Called in main loop, does computations for collisions, gravity,
and moving
UI - Called after OpenCL render has completed, renders text to the
screen (star count and fps)
Security Concerns:
File Importing - Overflowing of voxel buffers
Settings - Unintended user inputs
Countermeasures:
File Importing - Only read up until buffer limit
Settings - Ranges of desired user inputs, only read integers

Requirements/Specifications/Other Constraints
- Must use a direct memory representation/rendering
- Must parallelize rendering algorithm using the GPGPU
- Preferably use a portable GPGPU framework
- Find speedup in terms of FPS
- Minimum 30 FPS with 1024x786 resolution and draw

distance of 100 voxels
- Get project working for varied OS and hardware

Test Application
- Must use parallelized engine and should be portable
- Should highlight the advantages and strengths of the

engine
- May incorporate new features such as physics, lighting,

etc.

World 1 World 2 World 3 World 4

The Original Demo

The Conceptual Sketch

Programming Language
- C

Libraries
- GLFW, OpenCL, GLAD

Development Tools/Environments
- Visual Studio Code, Git, CMake, Make, MinGW

Ray-Based Lighting Bounding-Box Renderer

3D World to 2D Texture The Hub World

Average
frame rate

for
worlds:

NVIDIA GTX
980

NVIDIA GTX
1060

NVIDIA GTX
1070

NVIDIA RTX
3070

Apple M1

World 1 70 67 90 250 213

World 2 100 91 130 275 238

World 3 80 71 100 225 233

World 4 111 143 140 275 226

Standards (IEEE)
- 730-2014 - Software Quality Assurance Processes
- 1219-1998 - Software Maintenance
- 24748-5-2017 - Life Cycle Management – Part 5:

Software Development Planning

mailto:mgd@iastate.edu
mailto:cmedina2@iastate.edu
https://ieeexplore.ieee.org/document/6835311

